
JOURNAL OF COMPUTATIONAL PHYSICS 136, 446–466 (1997)
ARTICLE NO. CP975773

Roe Matrices for Ideal MHD and Systematic Construction of Roe
Matrices for Systems of Conservation Laws

Patricia Cargo and Gérard Gallice
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In this paper, the construction of a Roe’s scheme for the conserva-
tive system of ideal magnetohydrodynamics (MHD) is presented.
As this method relies on the computation of a Roe matrix, the
problem is to find a matrix A(Ul , Ur) which satisfies the following
properties. It is required to be consistent with the jacobian of the
flux F, to have real eigenvalues, a complete set of eigenvectors and
to satisfy the relation: DF 5 A(Ul , Ur) DU, where Ul and Ur are two
admissible states and DU their difference. For the ideal MHD system,
using eulerian coordinates, a Roe matrix is obtained without any
hypothesis on the specific heat ratio. Especially, its construction
relies on an original expression of the magnetic pressure jump.
Moreover, a Roe matrix is computed for lagrangian ideal MHD, by
extending the results of Munz who obtained such a matrix for the
system of lagrangian gas dynamics. So this second matrix involves
arithmetic averages unlike the eulerian one, which contains classical
Roe averages like in eulerian gas dynamics. In this paper, a system-
atic construction of lagrangian Roe matrices in terms of eulerian
Roe matrices for a general system of conservation laws is also
presented. This result, applied to the above eulerian and lagrangian
matrices for ideal MHD, gives two new matrices for this system. In
the same way, by applying this construction to the gas dynamics
equations new Roe matrices are also obtained. All these matrices
allow the construction of Roe type schemes. Some numerical exam-
ples on the shock tube problem show the applicability of this
method. Q 1997 Academic Press

1. INTRODUCTION

During the last years, Godunov-type schemes became
famous for solving hyperbolic systems of conservation
laws, with discontinuous solutions. Recently, some of them,
originally developed for gas dynamics problems, have been
extended to solve ideal magnetohydrodynamics equations.

Especially Daı̈ and Woodward [1, 2] have constructed
an approximate Riemann solver for the PPM scheme [5–7].
Zachary and Colella have considered a modification [3, 4]
of the Engquist–Osher flux [8], and Khanfir [9] has intro-
duced a formal extension of a kinetic scheme.

Many authors have considered Roe-type schemes to
solve ideal MHD. The first important improvement in this
subject has been made by Brio and Wu [11]. They have
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used the Roe scheme and have computed a Roe average,
but for the special case where the specific heat ratio c is
equal to 2. Then Powell [10] has given a new formulation
of the multidimensional ideal MHD equations, in order
to satisfy numerically the relation on the magnetic field
divergency. Finally, Aslan has proposed a fluctuation ap-
proach, using ‘‘partial Roe averaging’’ [19] and Ryu and
Jones describe a Roe-type scheme using arithmetic aver-
ages in [35].

In this paper, we are interested in the construction of a
Roe scheme for the ideal MHD equations, using eulerian
or lagrangian coordinates, without any hypothesis on the
value of c.

Our motivation in using a Roe scheme to solve the MHD
equations relies on several advantages which make it well
known. First of all, during the last decade, it has known a
real success and has been largely used in computational
fluid dynamics [28]. Its relative simplicity, its accuracy and
its robustness have been greatly demonstrated in order to
solve the Euler equations. In the MHD case, its cost is
clearly weaker than for schemes similar of those developed
in [1–4]. On the other hand, its interest can seem to be
less evident when it is compared with an approximate Roe-
type scheme involving, for example, arithmetic averages
as in [19, 35]. In fact, the extra cost of an exact Roe scheme
with respect to this type of scheme is only the evaluation
of averaged quantities like density, velocity, magnetic field,
and enthalpy with Roe-type averages instead of arithmetic
averages. But, this cost is really much weaker than that
due to the evaluation of eigenvalues, right eigenvectors,
and characteristic variables which must be made in any
case. This argument and its intrinsic properties show the
interest to use an exact Roe scheme. In particular, the Roe
scheme is a Godunov type scheme because it satisfies the
‘‘conservation in the small.’’ It follows from this property
that Roe scheme captures exactly a stationary discontinu-
ity. Consequently, it is less dissipative than approximate
Roe-type solvers. But the capture of this type of discontinu-
ity whether or not it is an admissible discontinuity is the
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counterpart of this property. To handle this difficulty, many
authors [28, 34] have proposed some well-known minor
correction. Another important feature of Roe scheme is
that it is really an upwind scheme in the sense of [33]. The
experience in the Euler equations shows that this property
is interesting for the treatment of boundary conditions or
a fast convergence to stationary solutions in aerodynamic
calculations. In MHD, this last point can be attractive to
simulate different astrophysical situations like the solar
wind flow around comets.

The plan of this paper is as follows. In Section 2, the
equations of ideal MHD are defined. In Section 3, the
different steps of Roe scheme, which relies on the computa-
tion of a Roe matrix, are summarized. Then, the construc-
tion of two Roe matrices for ideal MHD, using eulerian
(Section 4) and lagrangian (Section 5) coordinates, with
some numerical experiments is presented. The treatment
of magnetic terms involves an original relation, which rep-
resents the main result for this fourth section. For the
lagrangian system, Munz’ [12] scheme is extended. He has
obtained a Roe matrix which introduces arithmetic aver-
ages for lagrangian gas dynamics with a general state equa-
tion. In Section 6, a systematic construction of lagrangian
Roe matrices is given in terms of the eulerian Roe matrices
for general hyperbolic conservation laws, in one space di-
mension. This result is used in Section 7 to construct two
new Roe matrices for ideal MHD from the ones computed
in Sections 4 and 5. Some numerical examples are also
presented. A summary of this study and some remarks are
given at the end of this paper in Section 8.

2. IDEAL MHD EQUATIONS

The MHD equations characterize the flow of a conduct-
ing fluid in the presence of a magnetic field. They represent
the coupling of fluid dynamical equations with Maxwell’s
equations of electrodynamics. By neglecting displacement
current, electrostatic forces, effects of viscosity, resistivity
and heat conduction, one obtains the ideal MHD equa-
tions [13]:

5
­r

­t
1 = ? (rV) 5 0

­

­t
(rV) 1 = ?SrVV 1 p*I 2

1
e

BBD5 0

­B
­t

1 = ? (VB 2 BV) 5 0

­

­t
(rE*) 1 = ?SrH*V 2

1
e

(B ? V)BD5 0

(2.1)

with the constraint = ? B 5 0, which is satisfied by the
solution of the initial value problem if it is satisfied initially.

Here, r is the density, V is the velocity, B is the magnetic
field, p* is the full pressure, rE* is the energy, rH* is the
enthalpy, and e is the vacuum permittivity.

The pressure, energy, and enthalpy are defined by

p* 5 p 1
B2

2e
, rE* 5

1
2

rV 2 1 r« 1
B2

2e
,

r« 5
p

c 2 1
, rH* 5 rE* 1 p*,

(2.2)

where p is the hydrodynamic pressure and r« is the internal
energy. In the following, we assume e 5 1.

3. A ROE SCHEME REVIEW

Let us consider the following hyperbolic system of con-
servation laws:

­U
­t

1
­

­x
F(U) 5 0. (3.1)

The numerical solution Un at time t n is assumed to be
a piecewise constant function on each grid cell xi21/2 , x #
xi11/2 . The resolution of (3.1) with the initial condition Un

on the time interval t n # t # t n11 defines a sequence of
Riemann problems at each interface of the grid.

In a finite volume discretization, the solution Un11
i is

obtained by averaging the exact or approximated solution
Û of (3.1) at the discrete time level t n1l,

Un11
i 5

1
Dx

Exi11/2

xi21/2

Û(x, t n11) dx, (3.2)

where Dx denotes the uniform size of the computational
cells. These values are then used to define new piecewise
constant function at the time level t n11.

Instead of computing the exact solution of the system
(3.1) like in Godunov’s scheme [14], the Roe’s method
[15] consists in solving exactly the following linearized Rie-
mann problem at each cell interface:

­U
­t

1 Ai11/2
­U
­x

5 0

(3.3)

U(x, tn) 5H Un
i , if x , xi11/2 ,

Un
i11 , if x $ xi11/2 .

The matrix Ai11/2 is called a Roe matrix and is required
to have the properties:

F(Ui11) 2 F(Ui) 5 Ai11/2(Ui11 2 Ui) (3.4)
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as

Ui , Ui11 R U0 , Ai11/2(Ui , Ui11) R A(U0), (3.5)

where A 5 dF/dU

Ai11/2 has real eigenvalues and
(3.6)

a complete set of eigenvectors.

The solution of (3.3) is averaged over each cell of the
mesh in order to obtain the numerical approximation at
next time level t n11,

Un11
i 5 Un

i 2
Dt
Dx

(Hn
i11/2 2 Hn

i21/2), (3.7)

where Dt is the time step.
The conservative form (3.7) involves the numerical flux

at cell interfaces, which is given by the relation [15]

Hn
i11/2 5

1
2 SFi 1 Fi11 2 O

k
ulk

i11/2uhk
i11/2Rk

i11/2D, (3.8)

where lk
i11/2 denote the eigenvalues of Ai11/2 and its charac-

teristic variables are defined by hk
i11/2 5 Lk

i11/2 ? DU. More-
over, Rk

i11/2 and Lk
i11/2 are respectively its right and left ei-

genvectors.
So the main step in Roe’s scheme construction is the

computation of a Roe matrix. Now, this is what we develop
for the ideal MHD system in one space dimension.

4. A ROE MATRIX FOR EULERIAN IDEAL MHD

4.1. The Model and Some Properties

In one space dimension, the ideal MHD system, using
eulerian coordinates, is given by the equations [13, 17, 26]

­r

­t
1

­

­x
ru 5 0

­

­t
(ru) 1

­

­x
(ru2 1 p*) 5 0

­

­t
(rv) 1

­

­x
(ruv 2 BxBy) 5 0

­

­t
(rw) 1

­

­x
(ruw 2 BxBz) 5 0 (4.1)

­By

­t
1

­

­x
(Byu 2 Bxv) 5 0

­Bz

­t
1

­

­x
(Bzu 2 Bxw) 5 0

­

­t
(rE*) 1

­

­x
(ruH* 2 Bx(Bxu 1 Byv 1 Bzw)) 5 0,

where u, v, w are the three components of the velocity V
and Bx , By , Bz are the components of the magnetic field B.

The magnetic field has to satisfy = ? B 5 0, which in one
dimension becomes Bx 5 const. This system is hyperbolic
and has seven eigenvalues, written in an increasing order,

u 2 cf , u 2 ca , u 2 cs , u, u 1 cs , u 1 ca , u 1 cf , (4.2)

with

c2
a 5 b2

x

c2
f 5

1
2

((a*)2 1 Ï(a*)4 2 4a2b2
x) (4.3)

c2
s 5

1
2

((a*)2 2 Ï(a*)4 2 4a2b2
x)

and

b 5
B

Ïr
, b 5 t(bx , by , bz)

(4.4)

(a*)2 5 a2 1 b2, a2 5 c
p
r

.

The quantities ca , cs , cf define the velocities of the Alfvén
waves, the slow and fast waves.

It is interesting to note that this system is not strictly
hyperbolic; some eigenvalues may coincide especially
when Bx 5 0 or B2

y 1 B2
z 5 0. Brio and Wu [11] have

studied a renormalization of the eigenvectors given by
Jeffrey and Taniuti [13] to obtain a complete set of eigen-
vectors even in the two above cases. But the components
of these eigenvectors remain singular in the magnetosonic
case, arising when the fast, slow, and Alfvén speeds coin-
cide. Roe and Balsara [20] have examined the eigenstruc-
ture of the ideal MHD equations. Especially, their study
shows that the indeterminacy near the magnetosonic case
does not induce any difficulty to compute a numerical flux
even if it cannot be avoided.

We conclude this section with an important property of
the system when c 5 2. In this case, the system decouples
into two systems. The first one looks like the gas dynamic
system, with p* as pressure, rE* as energy, rH* as enthalpy,
and the following state equation:

p* 5 r« 1
B2

2
.
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The second system, which is a set of advection equations,
describes the evolution of the transverse components of
the magnetic field.

Brio and Wu [11] have used this property to develop a
Roe-type scheme for ideal MHD. Let us denote Ul and Ur

two admissible states. For the special case c 5 2, they have
computed a Roe matrix A which is defined by the relation

A(Ul , Ur) 5 A(Uave(Ul , Ur))

where Uave(Ul , Ur) is a generalization of the Roe average
for gas dynamics,

Uave(Ul , Ur) 5 U(r, u, v, w, H*, By , Bz), (4.5)

with

j 5
Ïrljl 1 Ïrrjr

Ïrl 1 Ïrr

, j 5
Ïrrjl 1 Ïrljr

Ïrl 1 Ïrr

. (4.6)

For the general case, they have not found a Roe matrix;
they have used the jacobian matrix at some average state
but the property (3.4) is not satisfied.

Now, in order to understand the difficulties and the
results we obtain, the computation of a Roe matrix on a
simplified model of ideal MHD is presented.

4.2. A Roe Matrix for Ideal Isentropic MHD

The model is given by the equations

­r

­t
1

­

­x
ru 5 0

­

­t
(ru) 1

­

­x Sru2 1 p 1
B2

2 D5 0 (4.7)

­B
­t

1
­

­x
(Bu) 5 0,

where the pressure is given by the isentropic law:

p 5 Crc with C . 0; c $ 1.

Here, the quantity B represents one of the transverse
components of the magnetic field. The other ones are as-
sumed to be zero, like the transverse components of the ve-
locity.

This system looks like the isentropic gas dynamics
model, with an advection equation for the magnetic field
and the presence of the magnetic pressure in the momen-
tum conservation equation.

In order to construct a Roe matrix for this system, we
first use the analogy with gas dynamics. When the magnetic
field is zero, the matrix is required to coincide with the
Roe matrix for gas dynamics. This constraint gives us the
averages to use in order to express the jump on the hydro-
dynamic terms.

For the following, we define Dj 5 jl 2 jr and we use
the classical relation

D(jh) 5 j Dh 1 h Dj, (4.8)

where j and h are defined by (4.6).
We introduce the positive average quantity a2 for the

sound velocity. It is a function of Ul and Ur and it is defined
such that Dp 5 a2 Dr.

The most important difficulty lies in the decomposition
of the magnetic pressure jump.

The natural relation DB2 5 2B̃ DB, where B̃ denotes
the arithmetic average between the left and right states,
leads to a matrix whose eigenvalues are not real. So, we
are looking for a more general relation which expresses
the variations of the magnetic pressure in terms of each
component of the conservative vector,

D
B2

2
5 X Dr 1 Y D(ru) 1 Z DB, (4.9)

where X, Y, Z are three coefficients to evaluate.
These quantities are computed such that the resulting

matrix Aisen is a Roe matrix:

Aisen 5 3
0 1 0

2u2 1 a2 1 X 2u 1 Y Z

2u SB
r
D SB

r
D u4. (4.10)

Like the jacobian of the continuous system (4.7), it is
natural to look for a matrix whose eigenvalues respect the
galilean invariance and are symmetrical with respect to the
velocity u. This requirement implies that the unknown
parameter Y is zero.

Moreover, we want to agree with the results of Brio and
Wu in the special case c 5 2. That is why we use the
average B for the magnetic field; this is the unique average
of B, involved with the Roe matrix of Brio and Wu. This
leads to the relation

D
B2

2
5 X Dr 1 B DB. (4.11)
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Hence, we easily obtain

X 5
(DB)2

2(Ïrl 1 Ïrr)2
. (4.12)

The matrix defined by the relations (4.9) to (4.12) is
a Roe matrix, whose eigenvalues are real and given by
the expressions

u 2 Ïa2 1 B2/r 1 X, u, u 1 Ïa2 1 B2/r 1 X. (4.13)

We remark that this matrix coincides with the one of
isentropic gas dynamics when the magnetic field is zero.
This result is very interesting because it gives a way to
express the jump on the magnetic pressure with the rela-
tion (4.11).

Let us note that this relation is quite surprising: it ex-
presses the magnetic pressure jump not only in terms of
the magnetic field jump, but also in terms of the density
jump, which is less natural.

4.3. A Roe Matrix for Ideal MHD

We present here the construction of a Roe matrix for
the system (4.1). It is computed without any hypothesis on
c. In order to compute this matrix, we use the main results
obtained in the above section.

The jumps of the hydrodynamic terms in the flux are
treated with the same relations and the same averages as
the gas dynamics equations. For example, for the variations
of the kinetic energy, we use

D(rV 2) 5 2 V 2 Dr 1 2V ? D(rV). (4.14)

On the other hand, the variations of the magnetic pres-
sure are expressed in terms of the magnetic field jump and
the density jump [21],

D
B2

2
5 X Dr 1 B ? DB. (4.15)

With the relations (4.15), (4.12), and (4.14), we can easily
express the jumps on the pressure and the full enthalpy:

Dp 5 (c 2 1)FSV 2

2
2 XD Dr 2 V ? D(rV)

1 D(rE*) 2 B ? DBG

D(rH*) 5 F(2 2 c)X 1
1
2

(c 2 1)V 2G Dr

2 (c 2 1)V ? DV 1 c D(rE*) 1 (2 2 c)B ? DB.

By this way, we obtain the matrix

3
0 1 0 0 0 0 0

d21 d22 d23 d24 d25 d26 d27

2uv v u 0 2Bx 0 0

2uw w 0 u 0 2Bx 0

2By

r
u 1

Bx

r
v

By

r

2Bx

r
0 u 0 0

2Bz

r
u 1

Bx

r
w

Bz

r
0

2Bx

r
0 u 0

d 71 d 72 d 73 d 74 d 75 d 76 d 77

4
(4.16)

with

d21 5 2u2 1 (2 2 c)X 1
c 2 1

2
V 2, d22 5 2u 2 (c 2 1)u

d23 5 2(c 2 1)n, d24 5 2(c 2 1)w

d25 5 (2 2 c)By , d26 5 (2 2 c)Bz , d27 5 c 2 1

and:

d 71 5 2uH* 1 u(d21 1 u2) 1
Bx

r
(V ? B)

d 72 5 H* 1 u(d22 2 2u) 2
B2

x

r
, d 73 5 ud23 2

Bx

r
By ,

d 74 5 ud24 2
Bx

r
Bz

d 75 5 ud25 2 Bxn, d 76 5 ud26 2 Bxw, d 77 5 u 1 ud27

The above matrix is a Roe matrix and its eigenvalues are
given in an increasing order,

u 2 cf , u 2 ca , u 2 cs , u, u 1 cs , u 1 ca , u 1 cf
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with

c2
a 5 bx

2

c2
f 5

1
2

((a*)2 1 Ï(a*)4 2 4a2bx
2) (4.17)

c2
s 5

1
2

((a*)2 2 Ï(a*)4 2 4a2bx
2)

and

b 5
B

Ïr
, b 5 t(bx , by , bz)

a*2 5 a2 1 b2, a2 5 (2 2 c)X 1 (c 2 1)SH* 2
V 2

2
2 b2D.

In order to define completely, the Roe numerical flux,
the eigenvectors, and the characteristic variables are re-
quired. The eigenvectors are defined by

Ru 5
1
a23

1

u

v

w

0

0

V 2

2
1 Fc 2 2

c 2 1GX

4
(4.18)

Ru6ca
53

0

0

6rbz

7rby

2SÏrbz

SÏrby

6r(nbz 2 wby)

4
Ru6cs

5
1

ra23
ras

ras(u 6 cs)

r(asn 6 af cf byS)

r(asw 6 af cf bzS)

2Ïraf aby

2Ïraf abz

rasFH* 2
B2

r
6 ucsG6 raf cf S(nby 1 wbz) 2 Ïraf auB'u

4
(4.19)

Ru6cf
5

1
ra23

raf

raf (u 6 cf )

r(afn 7 ascsbyS)

r(af w 7 ascsbzS)

Ïrasaby

Ïrasabz

rafFH* 2
B2

r
6 ucfG7 rascsS(nby 1 wbz) 2 Ïras auB'u

4
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and the characteristic variables satisfy the relations

hu 5 [a2 2 X] Dr 2 Dp

hu6ca
5

1
2 F7by Dw 6 bz Dn 1

S

Ïr
(by DBz 2 bz DBy)G

hu6cs
5

1
2

[as[X Dr 1 Dp] 6 raf cf S(by Dn 1 bz Dw)
(4.20)

6 rascs Du 2 Ïraf a(by DBy 1 bz DBz)]

hu6cf
5

1
2

[af [X Dr 1 Dp] 7 rascsS(by Dn 1 bz Dw)

6 raf cf Du 1 Ïrasa(by DBy 1 bz DBz)]

with the notations

S 5 sign(Bx), by,z 5
By,z

uB'u
, uB'u 5 ÏB2

y 1 B2
z

(4.21)

a2
f 5

a2 2 c2
s

c2
f 2 c2

s
, a2

s 5
c2

f 2 a2

c2
f 2 c2

s

Let us note that the above eigenvectors have been ob-
tained by the same normalization as in Roe–Balsara [20].
Moreover, the treatment of the indeterminate cases is the
same as in [20]. So, we have a complete set of eigenvectors
in all cases.

4.4. Numerical Application

With this matrix, we construct a first-order Roe type
scheme. For the numerical example, we choose a coplanar
MHD Riemann problem, whose initial value consists of
two constant states Ul and Ur . The initial left and right
values have been suggested by Brio and Wu in [11] and
are commonly used to test numerical schemes for one-
dimensional ideal MHD:

(r, u, v, w, By , Bz , p)l 5 (1, 0, 0, 0, 1, 0, 1),
(4.22)

(r, u, v, w, By , Bz , p)r 5 (Ak, 0, 0, 0, 21, 0, a;A ).

Moreover, Bx 5 Df and c 5 1.4.
Note that the hydrodynamical data used here are identi-

cal to those in Sod’s shock tube Riemann problem. The
discretization is given by 800 cells whose length is 1. The
initial discontinuity is located at the middle of the mesh.

In [11], Brio and Wu have chosen a value of c equal to
2. In this special case they have been able to find a Roe
matrix which is the flux jacobian evaluated at the averaged
state (4.5). For this value of c, our Roe matrix coincides
with Brio and Wu matrix and thus gives exactly the same
numerical results.

Here, we choose the value c 5 1.4. In this case, Brio
and Wu have proposed to use a simple averaging procedure
but the resulting matrix is not a Roe matrix.

The results are presented on Figs. 1 and 2 at 80 s with
a CFL number equal to 0.9. Figure 1 shows the numerical
solution computed with the first-order Roe type scheme
and Fig. 2 with the Lax–Friedrichs scheme [18]. Here, we
can see the efficiency of the Roe scheme which is more
accurate than the Lax scheme. As in [11], calculations with
an increased number of grid points up to 20,000 show the
convergence of the Lax–Friedrichs scheme to the same
solution as the one obtained by our Roe scheme.

For each quantity, the solution contains five constant
states separated by a fast rarefaction wave, a slow com-
pound wave, a slow shock, and a fast rarefaction wave.
The density presents a sixth constant state because this
variable is discontinuous across the contact discontinuity.

This numerical example is interesting because it involves
a compound wave. This allows us to show off one of the
typical features of solutions of the MHD system. Here,
the slow compound wave contains a slow shock attached
to a slow rarefaction moving to the left. It is due to the
change of sign of the component By in the initial discontinu-
ity. The detailed study of this wave type has been made
by Brio and Wu in [11] where they established a relation
between the existence of the compound wave and the non-
convex character of the MHD system.

5. A ROE SCHEME FOR LAGRANGIAN IDEAL MHD

In this section, the construction of a Roe matrix for the
equations of ideal MHD, using lagrangian coordinates, is
studied. The derivation of the lagrangian formulation can
be found in [16].

5.1. The Model

In one dimension, the equations of lagrangian ideal
MHD may be obtained from the eulerian ones by introduc-
ing the new variables (t, m) such that:

t 5 t and m 5 E r dx. (5.1)
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FIG. 1. First-order Roe-type scheme for eulerian coordinates.
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FIG. 2. Lax scheme for eulerian coordinates.
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So the system is given by the equations

­q

­t
2

­u
­m

5 0

­u
­t

1
­

­m
p* 5 0

­n
­t

1
­

­m
(2BxBy) 5 0

­w
­t

1
­

­m
(2BxBz) 5 0 (5.2)

­

­t
(qBy) 1

­

­m
(2Bxn) 5 0

­

­t
(qBz) 1

­

­m
(2Bxw) 5 0

­E*
­t

1
­

­m
(up* 2 Bx(Bxu 1 Byn 1 Bzw)) 5 0,

where q is the specific volume: q 5 1/r. As in the eulerian
case, Bx is a constant.

This system of conservation laws is noted:

­W
­t

1
­G
­m

5 0. (5.3)

It is hyperbolic and its eigenvalues are given by

2
cf

q
, 2

ca

q
, 2

cs

q
, 0,

cs

q
,
ca

q
,
cf

q
(5.4)

with the previous notations (4.3) and (4.4).

5.2. Construction of the Roe Matrix

Like the eulerian ideal MHD system, when c 5 2 and
Bx is uniformly zero, (5.2) decouples into two systems. One
of them looks like the lagrangian gas dynamics system with
p* as pressure, E* as energy, and the following equation
of state:

p* 5 r« 1
B2

2
.

A Roe matrix has been computed by Munz [12] for the
lagrangian gas dynamics equations. We recall the main
points of Munz results.

In the case of a perfect gas equation of state, the Roe
matrix computed by Munz is given by the jacobian of the
system evaluated at the averaged state [12] Wave(WD

l ,
WD

r ) 5 WD(q̃ ũ, p̃), where WD 5 t(q, u, Eh) and the

hydrodynamic energy is given by

Eh 5
pq

c 2 1
1

u2

2
,

where j̃ denotes the arithmetic average between the left
and right states.

Note that this matrix has been already discovered in [27]
to obtain ‘‘conservation in the small.’’ This construction
relies on an essential relation [12] which expresses the
jump on the pressure in terms of each component of the
vector WD:

Dp 5 2
p̃

q̃
Dq 2 (c 2 1)

ũ

q̃
Du 1

(c 2 1)

q̃
DEh. (5.5)

According to the decoupling property, we are able to
find an averaged state for the lagrangian MHD system
when c 5 2 from the Munz averaged state. For this special
case, a Roe matrix is given by the jacobian of the lagrangian
flux calculated at this state. As this matrix involves arith-
metic averages, it seems natural to use the same kind of
averages to derive a Roe matrix for any c.

For the lagrangian ideal MHD model (5.3), let us define
AL the Roe matrix we are looking for. The first step of
the Roe’s method consists in developing the jump on the
flux in terms of the variations of the conservative variables:

DG 5 AL(Wl , Wr) DW. (5.6)

In the following, we often use the classical relation:

D(jh) 5 j̃ Dh 1 h̃ Dj (5.7)

in order to express the jump on a product of variables.
Note that the lagrangian coordinates introduce qB as a

conservative variable instead of B with eulerian coordi-
nates. To express the jump on the magnetic field involved
by the flux, we apply (5.7) to compute the variations on
qB and we finally get

DB 5 2
B̃

q̃
Dq 1

1

q̃
D(qB). (5.8)

This gives the relation we use to express the jump on the
magnetic pressure:

D
B2

2
5 B̃ ? DB 5 2

(B̃)2

q̃
Dq 1

B̃

q̃
? D(qB). (5.9)

The most difficult term to treat in the flux is the full
pressure. By definition, this quantity is the sum of the
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hydrodynamic pressure p and the magnetic pressure. So
we have

Dp* 5 Dp 1 D
B2

2
.

A generalization of the relation (5.5) obtained by Munz
gives

Dp 5 2
p̃

q̃
Dq 2 (c 2 1)

Ṽ

q̃
? DV 1

(c 2 1)

q̃
DEh.

Now, the hydrodynamic energy is defined by

Eh 5
pq

c 2 1
1

V 2

2
.

So it remains to develop the jump on Eh in terms of the
lagrangian ideal MHD conservative variables.

By the notations, we also have Eh 5 E* 2 qB2/2. So
we can write

DEh 5 DE* 2 q̃D SB2

2 D2 SB̃2

2 D Dq

5
(Bl ? Br)

2
Dq 1 DE* 2 B̃ ? D(qB).

Finally, the jump on the full pressure is given by

Dp* 5 S2
p̃

q̃
2

(B̃)2

q̃
1

c 2 1
2

(Bl ? Br)

q̃
D Dq 2

c 2 1

q̃
Ṽ ? DV

1
c 2 1

q̃
DE* 1 (2 2 c)

B̃

q̃
? D(qB).

(5.10)

In order to simplify this expression, we introduce two
new variables «* and B', defined by the relations

«* 5 « 1 q
B2

2
, B' 5 t(0, By , Bz).

With the above notations and the assumption giving Bx

as a real constant, the relation (5.10) becomes

Dp* 5 S2
c 2 1

q̃
S«̃*

q
D1

c 2 2

q̃
(B̃')2D Dq 2

c 2 1

q̃
Ṽ ? DV

1
c 2 1

q̃
DE* 1 (2 2 c)

B̃'

q̃
? D(qB).

(5.11)

The jump on the other components of the flux are devel-
oped by using the relations (5.7) to (5.11). Finally, we
obtain the following matrix [22]:

AL 53
0 21 0 0 0 0 0

j21 2(c 2 1)
ũ

q̃
2(c 2 1)

ṽ
q̃

2(c 2 1)
w̃

q̃
(2 2 c)

B̃y

q̃
(2 2 c)

B̃z

q̃

(c 2 1)

q̃

Bx
B̃y

q̃
0 0 0 2

Bx

q̃
0 0

Bx
B̃z

q̃
0 0 0 0 2

Bx

q̃
0

0 0 2Bx 0 0 0 0

0 0 0 2Bx 0 0 0

j71 j72 j73 j74 j75 j76 j77

4, (5.12)
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where

j21 5
(c 2 2)

q̃
(B̃')2 2

(c 2 1)

q̃
S«*̃

q
D

and

j71 5
(c 2 2)

q̃
ũ (B̃')2 2

(c 2 1)

q̃
ũ S«*̃

q
D1

Bx

q̃
(B̃' ? ṼD

j72 5 p*̃ 2 B2
x 2

(c 2 1)

q̃
ũ2

j73 5 2
(c 2 1)

q̃
ũṽ 2 BxB̃y , j74 5 2

(c 2 1)

q̃
ũw̃ 2 BxB̃z

j75 5
(2 2 c)

q̃
ũB̃y 2

Bx

q̃
ṽ, j76 5

(2 2 c)

q̃
ũB̃z 2

Bx

q̃
w̃,

j77 5
(c 2 1)

q̃
ũ.

By construction this matrix satisfies the jump relations
(5.6); it is consistent with the jacobian of the flux and it
has a complete set of eigenvectors with the real eigenvalues

2
c̃f

q̃
, 2

c̃a

q̃
, 2

c̃s

q̃
, 0,

c̃s

q̃
,
c̃a

q̃
,
c̃f

q̃

with

c̃ 2
f 5

1
2

((a*̃)2 1 Ï(ã*)4 2 4ã 2b̃2
x),

c̃ 2
s 5

1
2

((a*̃)2 2 Ï(ã*)4 2 4ã 2b̃2
x)

c̃ 2
a 5 b̃2

x

b̃ 5 B̃Ïq̃, b̃ 5 t(b̃x , b̃y , b̃z)

a*2̃ 5 ã 2 1 b̃2, ã 2 5 cPq̃

P 5 p̃ 1
c 2 1

c
((B2̃) 2 (B̃)2).

So AL is a Roe matrix for the lagrangian ideal MHD.
When c 5 2, it is interesting to note that this matrix is

the jacobian evaluated at the averaged state:

Sq̃, Ṽ, p 1
B2̃

2
, B̃D. (5.13)

5.3. Numerical Results

With the Roe matrix (5.12), we construct a first-order
Roe-type scheme to solve the ideal MHD equations using
lagrangian coordinates (5.2). We choose the same initial
condition as the first numerical example (4.22) presented
for the eulerian form.

On Fig. 3 and Fig. 4 are shown all the variables computed
by the Roe type scheme and the Lax–Friedrichs scheme
with 800 cells and a CFL number equal to 0.9. The numeri-
cal solution is presented at 100 s. The Roe scheme still
gives better results than the Lax scheme.

It is interesting to note that the solution has the same
structure for the eulerian and lagrangian system. Indeed,
we find again two fast rarefaction waves, a slow compound
wave and a slow shock for each quantity, with a contact
discontinuity in addition for the density.

6. CONSTRUCTION OF ROE MATRICES FOR
GENERAL SYSTEMS OF CONSERVATION LAWS

In this section, we are interested in the numerical resolu-
tion of general hyperbolic systems of conservation laws by
Roe’s schemes [23]. We try to construct Roe matrices for
systems using eulerian or lagrangian coordinates. In the
following, we describe how to compute systematically Roe
matrices for one of these two forms in terms of the Roe
matrix for the other form.

6.1. Introduction

Let V be a domain in IR3. Its boundary denoted ­V is
followed in its movement which is characterized by the
material velocity V.

An integral conservation law for a quantity U associated
to a flux G0 will be written

d
dt

E
V

U dV 1 E
­V

G0 ? n ds 5 0,

where n is the outward unit normal vector to V.
This integral form leads to the differential form using

eulerian coordinates

­U
­t

1 div(U J V 1 G0) 5 0,

where the velocity satisfies the relation

dM
dt

5 V 5 (u, v, w) for any point M in IR3.
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FIG. 3. Roe-type scheme for lagrangian coordinates.
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FIG. 4. Lax scheme for lagrangian coordinates.
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In one space dimension, this relation becomes

­U
­t

1
­F
­x

5 0 (6.1)

with the following definition of the flux:

F 5 uU 1 G0. (6.2)

Now we suppose that the first component of the vector
U is given by the density r, which satisfies

­r

­t
1

­

­x
ru 5 0.

We remark that the first component of G0 is identi-
cally zero.

In order to obtain the lagrangian form, we use the same
variables t, m as defined in Section 5 by the relation (5.1)
and we introduce the following quantities:

n 5 t(1, 0, 0, ......, 0), U 5 rn 1 U0, W0 5
U0

r
,

(6.3)

W 5
1
r

n 1 W0, G 5 2un 1 G0.

So we get the following conservation law for lagrangian co-
ordinates:

­W
­t

1
­G
­m

5 0. (6.4)

6.2. Relation between the Jacobians of the
Conservative Fluxes

It is easy to connect the two jacobians of the fluxes for
the eulerian and lagrangian forms. Indeed, let us define
the matrices

UW 5
­U
­W

, WU 5
­W
­U

5 U 21
W , (6.5)

and the jacobians of the eulerian and lagrangian fluxes,

AE 5
­F
­U

, AL 5
­G
­W

. (6.6)

So we have a first result:

PROPOSITION 1. The jacobians AE and AL are connected
by the simple relation

AL 5 2ruI 1 rWUAEUW , (6.7)

where I denotes the identity matrix.

Proof. From the definition of the eulerian flux (6.2),
we get the differential relation:

AE dU 5 dF 5 u dU 1 U du 1 dG0 .

Then, we multiply the above equation on the left by the
matrix WU , and we obtain

WUAEUW dW 5 u dW 1 WUU du 1 WU dG0. (6.8)

By the definitions (6.3) and (6.5), it is easy to show
the relation

dW 5 WU dU 5 2
W
r

dr 1
1
r

dU0

which yields the identities

WUU 5 2
1
r

n

WU dG0 5
1
r

dG0 .

Finally, by inserting these two relations in (6.8), we get

WUAEUW dW 5 u dW 2
1
r

n du 1
1
r

d G0

5 u dW 1
1
r

dG 5 SuI 1
1
r

ALD dW

which implies (6.7).

6.3. Relation between the Roe Matrices of the Eulerian
and Lagrangian Forms

We introduce a new kind of average associated to a
parameter a, which is defined by the relation

ja 5 ajl 1 (1 2 a)jr . (6.9)

If we define b such that: a 1 b 5 1, it is interesting to
note that we have the general identity

D(xy) 5 xa Dy 1 yb Dx. (6.10)

Let us note that Eq. (4.6) can be obtained from the
relation (6.9) with the choice of a,

a 5
Ïrl

Ïrl 1 Ïrr

, (6.11)

and the arithmetic average is given for a 5 As.
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In the same way as in the continuous case, we establish
a relation which looks like (6.7) and connects the Roe
matrices of the eulerian and lagrangian forms. For this
purpose, we introduce the notion of discrete transforma-
tion matrix from eulerian coordinates to lagrangian coordi-
nates with the following definition.

DEFINITION. A matrix WU is called an Euler–Lagrange
discrete transformation matrix if it satisfies the following
properties:

(i) it is invertible

(ii) it satisfies: DW 5 WU DU.

The inverse matrix, denoted UW, is called a Lagrange–
Euler discrete transformation matrix.

By the identity (6.10), we have

DW 5 qa D(rW) 1 Dq(rW)b

which can be written, with the definitions (6.3),

DW 5 qa DU0 2
1

rl rr
(rW)b Dr.

This relation involves an Euler–Lagrange discrete trans-
formation matrix, denoted W a

U , where a is a parameter. It
satisfies the relation

W a
UX 5 2

x
rl rr

(rW)b 1 qaX0 (6.12)

for any vector X defined by X 5 xn 1 X0, with X0 such
that its first component is equal to zero.

Now we give a second result:

PROPOSITION 2. Let us suppose that a Roe matrix AE

is known for the eulerian form. Then an infinite number of
Roe matrices for the lagrangian form exists. All these matri-
ces, denoted Aa

L , are parametrized by a real a. They are
given by the following identity:

Aa
L 5 q21

a (2uaI 1 W a
UAEU a

W). (6.13)

Conversely, if one knows a Roe matrix AL for the lagrangian
form, we can construct an infinite number of Roe matrices
for the eulerian form. They are given by the relation:

Aa
E 5 uaI 1 qaU a

WALW a
U . (6.14)

Proof. By construction, we have

DF 5 AE DU 5 AE U a
W DW

which yields

AEU a
W DW 5 ua DU 1 Ub Du 1 DG0

by the definition (6.2) of the flux.
We multiply this identity by W a

U on the left and we get

W a
UAEU a

W DW 5 ua DW 1 DuW a
UUb 1 W a

U DG0.

Now we apply the relation (6.12) to the vectors Ub and
DG0, instead of X, and we find

W a
UUb 5 2qan,

W a
U DG0 5 qa DG0.

Finally, it follows that

W a
UAEU a

W DW 5 ua DW 1 qa(2Dun 1 DG0)

which implies the desired identity.

Remark. Let us note that by recurrence it is easy to
extend this result [23] and to show the following:

If there exists an n-parameter family of Roe matrices
for one of the two forms, then there exists an n-parameter
family for the other form.

We conclude this section by giving some properties on
the eigenvalues and the eigenvectors for the eulerian and
lagrangian forms. Indeed, it is interesting to remark that
simple relations connect these quantities for one of the
two forms to the same quantities for the other form.

Let us note lL , RL , LL , and hL the eigenvalues, the
right and left eigenvectors, and the characteristic variables
for the Roe matrix of the lagrangian form. lE , RE , LE ,
and hE denote the same quantities for the eulerian form.

By using the relations between the Roe matrices of the
two forms (cf. Proposition 2), we can easily establish the
following identities:

lL 5 q21
a (lE 2 ua)

RL 5 W a
URE (6.15)

LL 5 LEU a
W .

Moreover, by the definitions of the characteristic variables
and the Lagrange–Euler discrete transformation matrix,
we show that the characteristic variables are the same for
the two forms:

hL 5 LL DW 5 LE DU 5 hE . (6.16)
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7. APPLICATIONS

In this section, we describe the application of the general
results obtained in the last section for the gas dynamics
equations and the ideal MHD model.

7.1. Application to Gas Dynamics

First, let us recall the model. When eulerian coordinates
are used, the system is given by the set of equations,

­r

­t
1

­

­x
ru 5 0

­

­t
(ru) 1

­

­x
(ru2 1 p) 5 0 (7.1)

­

­t
(rE) 1

­

­x
(ruH) 5 0,

where

rE 5
1
2

ru2 1
p

c 2 1
, rH 5 rE 1 p,

and the lagrangian gas dynamics model satisfies

­q

­t
2

­u
­m

5 0

­u
­t

1
­p
­m

5 0 (7.2)

­E
­t

1
­

­m
(up) 5 0.

For each form of the model, a Roe matrix has been
constructed [12, 15]. Each one involves two different kinds
of averages: arithmetic averages for the lagrangian one
[12] and classical Roe averages for the eulerian one. We
can apply the results of the sixth section to each of these
Roe matrices. So we get an infinity of Roe matrices for
the other form which are parametrized by a real a.

Especially, to obtain an eulerian Roe matrix, we choose
the parameter a and the discrete transformation matrices
such that:

ja 5 j̃. (7.3)

In this case, we have

(7.4)UW 5
1

q̃ 3
2r̃ 0 0

2(rũ) 1 0

2(rẼ) 0 1
4, WU 5

1
rl rr 3

21 0 0

2(rũ) r̃ 0

2(rẼ) 0 r̃
4.

Then we apply the relation (6.14) to the lagrangian Roe
matrix of Munz, which yields a new Roe matrix for the
eulerian gas dynamics:

3
ũ 2 q̃(rũ) r̃q̃ 0

2
(rũ)2

rl rr
1

c 2 1
2

ul ur (2 2 c)ũ 1 q̃(rũ) c 2 1

2
(rũ)
rl rr

(rH̃ ) 1
c 2 1

2
ul ur ũ q̃(rH̃ ) 2 (c 2 1)ũ2 cũ 4 .

(7.5)

Its eigenvalues are given by

ũ 2 c̃, ũ, ũ 1 c̃ with c̃ 5 Ïcp̃q̃.

The identities (6.15) lead to the expressions for the right ei-
genvectors,

Rũ2c̃ 5
1

r̃ã 2 3
r̃

(rũ) 2 C̃

(rH̃ ) 2 ũC̃
4, Rũ 5

1

r̃ã 2 3
r̃

(rũ)

Srũ2

2 D4 ,

Rũ1c̃ 5
1

r̃ã 2 3
r̃

(rũ) 1 C̃

(rH̃ ) 1 ũC̃
4,

and for the characteristic variables,

aũ6c̃ 5 As(Dp 6 C̃ Du), aũ 5 ã 2 Dr 2 Dr,

where

C̃ 5
c̃

q̃
5 !c

p̃

q̃
, ã 2 5 c

p̃

r̃
.

Let us note that this matrix involves only one kind of
averages, arithmetic ones, unlike the classical eulerian Roe
matrix which contains Roe averages. Moreover, if we look
at the first line of the matrix (7.5), we see that it gives the
surprising decomposition,

D(ru) 5 (ũ 2 q̃(rũ)) Dr 1 r̃q̃ D(ru),
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FIG. 5. Lagrangian Roe matrix with Roe averages.
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FIG. 6. Eulerian Roe matrix with arithmetic averages.
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instead of

D(ru) 5 D(ru)

which is more natural.
It is interesting to remark that the sound speeds involved

by this matrix only depend on the thermodynamic vari-
ables.

To conclude this section, numerical experiments with
this Roe matrix show no difference with the results ob-
tained with the classical Roe matrix.

7.2. Application to Ideal MHD

In sections 4 and 5, we have computed two Roe matrices
for ideal MHD, one for the eulerian form and the other
one for the lagrangian form. We can apply the results of
the last section to construct new Roe matrices for these
two forms.

Especially, from the eulerian Roe matrix, we choose the
real parameter a like in (6.11),

a 5
Ïrl

Ïrl 1 Ïrr

,

and we get a lagrangian Roe matrix whose eigenvalues are

2rcs , 2rca , 2rcf , 0, rcs , rca , rcf ,

where cs , ca , cf are defined by (4.17).
Unlike the Roe matrix computed in Section 5 with arith-

metic averages, this one does not define a Roe average
even for the special case c 5 2.

We use this matrix to construct a Roe-type scheme to
solve lagrangian ideal MHD. Figure 5 presents the results
obtained on the same Riemann problem as for Section 5.
A comparison between these two lagrangian Roe type
schemes shows that they give exactly the same results.

Conversely, we can construct a new eulerian Roe matrix
for ideal MHD from the lagrangian Roe matrix based on
the extension of Munz’s results and given in Section 5.
The resulting matrix involves arithmetic averages like the
eigenvalues which are given by

ũ 2 c̃f , ũ 2 c̃a , ũ 2 c̃s , ũ, ũ 1 c̃s , ũ 1 c̃a , ũ 1 c̃f .

On Fig. 6, we present the numerical experiment given
by the Riemann problem (4.22) of the fourth section with
the Roe-type scheme constructed with this Roe matrix.

We can note that no difference exists between the results
obtained with the two matrices. Moreover, although the
matrix (4.16) and the new matrix deduced from Munz’s
matrix involve different averages, the costs of the calcula-

tion only differ in a few percentages in favour of the
new one.

Remark. The numerical examples presented on Fig. 5
and Fig. 6 are computed with an 800 cell mesh. This mesh
is quite fine. In fact, numerical simulations made with 200
cells do not show any difference between all the schemes.

8. CONCLUSION

In this paper, several results about Roe matrices for a
system of hyperbolic conservation laws are presented. The
first result deals with the eulerian MHD system and consti-
tutes a real improvement for the calculation of MHD flows.
Indeed, in opposition to the result of Brio and Wu, who
found that a Roe matrix exists for the special case c 5 2
and is a jacobian at an averaged state, our matrix is ob-
tained without any hypothesis on c. As demonstrated be-
fore, its construction is based on an original relation which
expresses the magnetic pressure jump in terms of the den-
sity jump.

The second one is for the ideal MHD system in lagran-
gian coordinates. In fact, in the same fashion that Munz
derived a Roe matrix for the lagrangian gas dynamics sys-
tem, a Roe matrix for lagrangian MHD is obtained. It is
based on arithmetic averages. As for eulerian coordinates,
the case c 5 2 is particular in the sense that the matrix is
a jacobian at an averaged state.

The few calculations presented above show that even
for first order, the Roe scheme is a very robust and accurate
scheme for MHD in eulerian or lagrangian coordinates.

Although it is not shown here, extension to second order
can be made using classical arguments to improve accuracy
[28]. Moreover, as for the gas dynamics system, the con-
struction of a Roe matrix for MHD with a general equation
of state or a multispecies model can be obtained; the ideas
of Glaister [29], Liou, van Leer, and Shuen [30], Vinokur
and Montagne [31], Liu and Vinokur [32], can be extended
in a straightforward manner to MHD in eulerian or lagran-
gian coordinates [22].

In addition, a more interesting result has been obtained
for a two-temperature model which includes the ideal
MHD equations for ions and an advection equation on
the electronic entropy [24, 25]. The details can be found
in [24], where they are given for eulerian and lagrangian co-
ordinates.

Then the final result shown in this paper is the establish-
ment of a general relation to construct an infinity of Roe
matrices for an eulerian or lagrangian system from a Roe
matrix which would be known for one of these two forms.
Here, some applications of this relation to compute two
new kinds of Roe matrices for the gas dynamics and the
ideal MHD are presented: the first type is based on the
classical Roe average and the second one on arithmetic
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averages. But we believe that this relation can have larger
applications. An example could be to use it in order to
construct eulerian Roe matrices for models whose eulerian
form is very complex. Indeed, as the lagrangian form is
generally simpler than the eulerian form, the computation
of a lagrangian Roe matrix would be easy and would give
an eulerian Roe matrix by the transformation relations. In
a future paper [26] such an application on an MHD-like
system will be presented.

We conclude on a very important application of these
results: our Roe matrix can be extended to compute multi-
dimensional MHD flows. In [10] Powell describes how to
modify the MHD system to hold some important proper-
ties and, in particular, galilean invariance. His technique
leads to the construction of modified MHD system. In [25,
26] it is shown how the matrix (4.16) can be naturally
extended to multidimensionnal situations in such a way
that the dissipation matrix satisfies the galilean invariance.
An interesting interpretation, which leads to a natural dis-
cretization of Powell source term, is also given.
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